A、 按需服务
B、 随时服务
C、 通⽤性
D、 价格不菲
答案:D
A、 按需服务
B、 随时服务
C、 通⽤性
D、 价格不菲
答案:D
A. 数据类型
B. 数据操作
C. 存储模式
D. 数据维护
A. Standalone(类似于MapReduce1.0,slot为资源分配单位)
B. SparkonMesos(和Spark有⾎缘关系,更好⽀持Mesos)
C. SparkonYARN
D. SparkonHDFS
A. 基于⽤户的协同过滤算法(简称UserCF算法)在1992年被提出,是推荐系统中最古⽼的算法
B. UserCF算法符合⼈们对于”趣味相投”的认知
C. 实现UserCF算法的关键步骤是计算⽤户与⽤户之间的兴趣相似度
D. UserCF算法符合兴趣相似的⽤户往往有相同的物品喜好
A. 为⽤户提供了系统底层细节透明的分布式基础架构
B. 具有很好的跨平台特性
C. 可以部署在廉价的计算机集群中
D. 被公认为⾏业⼤数据标准开源软件
A. 资源管理
B. 任务调度
C. 任务监控
D. 数据即服务
A. ⽤户可通过Client提供的⼀些接⼝查看作业运⾏状态
B. ⽤户编写的MapReduce程序通过Client提交到JobTracker端
C. JobTracker负责资源监控和作业调度
D. JobTracker会跟踪任务的执⾏进度、资源使⽤量等信息,并将这些信息告诉任务调度器(TaskScheduler)
A. DataNode:存储被拆分的数据块
B. JobTracker:协调数据计算任务
C. TaskTracker:负责执⾏由JobTracker指派的任务
D. SecondaryNameNode:帮助NameNode收集⽂件系统运⾏的状态信息
A. 实现⼀键式安装和配置、线程级别的任务监控和告警
B. 降低硬件集群、软件维护、任务监控和应⽤开发的难度
C. 便于做成统⼀的硬件、计算平台资源池
D. 不⽤负载应⽤混搭,集群利⽤率⾼
A. 专家推荐:⼈⼯推荐,由资深的专业⼈⼠来进⾏物品的筛选和推荐,需要较多的⼈⼒成本性
B. 基于统计的推荐:通过机器学习的⽅法去描述内容的特征,并基于内容的特征来发现与之相似的内容
C. 协同过滤推荐:应⽤最早和最为成功的推荐⽅法之⼀
D. 混合推荐:结合多种推荐算法来提升推荐效果
A. 数据存储方式
B. 数据传输速度
C. 数据查询语言
D. 数据安全性