A、 按需服务
B、 随时服务
C、 通⽤性
D、 价格不菲
答案:D
A、 按需服务
B、 随时服务
C、 通⽤性
D、 价格不菲
答案:D
A. 属于不同命名空间的块可以构成同⼀个”块池”
B. HDFSFederation中,所有名称节点会共享底层的数据节点存储资源,数据节点向所有名称节点汇报
C. 设计了多个相互独⽴的名称节点
D. HDFS的命名服务能够⽔平扩展
A. 存储被拆分的数据块
B. 协调数据计算任务
C. 负责协调集群中的数据存储
D. 负责执⾏由JobTracker指派的任务
A. 命名空间的限制
B. 性能的瓶颈
C. 隔离问题
D. 集群的可⽤性
A. Pregel将PageRank处理对象看成是连通图,⽽MapReduce则将其看成是键值对
B. Pregel将计算细化到顶点,同时在顶点内控制循环迭代次数
C. apReduce将计算批量化处理,按任务进⾏循环迭代控制
D. 图算法如果⽤Pregel实现,需要⼀系列的Pregel的调⽤
A. 数据快速持续到达,潜在⼤⼩也许是⽆穷⽆尽的
B. 数据来源众多,格式复杂
C. 注重数据的整体价值,不过分关注个别数据
D. 系统可以控制将要处理的新到达的数据元素的顺序
A. 描边(stroke)-颜⾊值
B. 描边宽度(stroke-width)-数字(通常以像素为单位)
C. SVG的默认样式是⿊⾊填充
D. 不透明度(opacity)–0.0(完全透明)和1.0(完全不透明)之间的数值
A. ⽀持各种编程语⾔:Storm⽀持使⽤各种编程语⾔来定义任务
B. 容错性:Storm需要⼈⼯进⾏故障节点的重启、任务的重新分配
C. 可扩展性:Storm的并⾏特性使其可以运⾏在分布式集群中
D. 免费、开源:Storm是⼀款开源框架,可以免费使⽤
A. Client
B. JobTracker
C. TaskTracker
D. Task
A. 把⽂件分布存储到多个计算机节点上,成千上万的计算机节点构成计算机集群
B. ⽤于在Hadoop与传统数据库之间进⾏数据传递
C. ⼀个⾼可⽤的,⾼可靠的,分布式的海量⽇志采集、聚合和传输的系统
D. ⼀种⾼吞吐量的分布式发布订阅消息系统,可以处理消费者规模的⽹站中的所有动作流数据
A. 为特定的图应⽤定制相应的分布式实现:通⽤性不好
B. 基于现有的分布式计算平台进⾏图计算:在性能和易⽤性⽅⾯往往⽆法达到最优
C. 使⽤单机的图算法库,但是,在可以解决的问题的规模⽅⾯具有很⼤的局限性
D. 使⽤已有的并⾏图计算系统,但是,对⼤规模分布式系统⾮常重要的⼀些⽅⾯(⽐如容错),⽆法提供较好的⽀持