A、 增加数据量
B、 删除重复数据
C、 提高数据质量
D、 降低存储空间
答案:C
A、 增加数据量
B、 删除重复数据
C、 提高数据质量
D、 降低存储空间
答案:C
A. 基于物品和商家的联合协同推荐
B. 基于统计的推荐
C. 专家推荐
D. 基于内容的推荐
A. Map将⼩数据集进⼀步解析成⼀批
B. Map每⼀个输⼊的
C. Reduce输⼊的中间结果
D. Reduce输⼊的中间结果
A. 协同过滤可分为基于⽤户的协同过滤和基于物品的协同过滤
B. UserCF算法符合⼈们对于”趣味相投”的认知,即兴趣相似的⽤户往往有相同的物品喜好
C. 实现UserCF算法的关键步骤是计算物品与物品之间的相似度
D. 基于物品的协同过滤算法(简称ItemCF算法)是⽬前业界应⽤最多的算法
A. NativeJavaAPI
B. HBaseShell
C. ThriftGateway
D. RESTGateway
A. Spark在借鉴HadoopMapReduce优点的同时,很好地解决了MapReduce所⾯临的问题
B. Spark的计算模式也属于MapReduce,但不局限于Map和Reduce操作
C. HadoopMapReduce编程模型⽐Spark更灵活
D. HadoopMapReduce提供了内存计算,可将中间结果放到内存中,对于迭代运算效率更⾼
A. 所有的数据交换都是通过MapReduce框架⾃⾝去实现的
B. 不同的Map任务之间会进⾏通信
C. 不同的Reduce任务之间可以发⽣信息交换
D. ⽤户可以显式地从⼀台机器向另⼀台机器发送消息
A. 在⼀致性⽅⾯,RDBMS强于NoSQL
B. 在数据完整性⽅⾯,RDBMS容易实现
C. 在扩展性⽅⾯,NoSQL⽐较好
D. 在可⽤性⽅⾯,NoSQL优于RDBMS